skip to main content


Search for: All records

Creators/Authors contains: "Rignot, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Jakobshavn Isbræ, a major outlet glacier in Greenland, lost its protective ice shelf in 2002 and has been speeding up and retreating since. We image its grounding line for the first time with a terrestrial radar interferometer deployed in 2016 and detect its migration at tidal frequencies. The southern half of the glacier develops a floating section (3 km × 3 km) that migrates in phase with the tidal difference, up to a distance of 2.8 km, far more than previously expected. We attribute the migration to kilometer‐scale seawater intrusions, 10–20 cm in height, with the tide. The intrusions reveal that the glacier bed may be up to 800 m deeper than expected on the south side, which illustrates that our knowledge of bed topography remains limited for this glacier. We expect seawater intrusions to cause rapid melt of basal ice and play a major role in the glacier evolution.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  2. Abstract Glacial fjord circulation modulates the connection between marine-terminating glaciers and the ocean currents offshore. These fjords exhibit a complex 3D circulation with overturning and horizontal recirculation components, which are both primarily driven by water mass transformation at the head of the fjord via subglacial discharge plumes and distributed meltwater plumes. However, little is known about the 3D circulation in realistic fjord geometries. In this study, we present high-resolution numerical simulations of three glacial fjords (Ilulissat, Sermilik, and Kangerdlugssuaq), which exhibit along-fjord overturning circulations similar to previous studies. However, one important new phenomenon that deviates from previous results is the emergence of multiple standing eddies in each of the simulated fjords, as a result of realistic fjord geometries. These standing eddies are long-lived, take months to spin up, and prefer locations over the widest regions of deep-water fjords, with some that periodically merge with other eddies. The residence time of Lagrangian particles within these eddies are significantly larger than waters outside of the eddies. These eddies are most significant for two reasons: 1) they account for a majority of the vorticity dissipation required to balance the vorticity generated by discharge and meltwater plume entrainment and act to spin down the overall recirculation and 2) if the eddies prefer locations near the ice face, their azimuthal velocities can significantly increase melt rates. Therefore, the existence of standing eddies is an important factor to consider in glacial fjord circulation and melt rates and should be taken into account in models and observations. 
    more » « less
  3. Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. 
    more » « less
  4. Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. 
    more » « less
  5. Abstract

    The mass loss of the Greenland Ice Sheet is nearly equally partitioned between a decrease in surface mass balance from enhanced surface melt and an increase in ice dynamics from the acceleration and retreat of its marine-terminating glaciers. Much uncertainty remains in the future mass loss of the Greenland Ice Sheet due to the challenges of capturing the ice dynamic response to climate change in numerical models. Here, we estimate the sea level contribution of the Greenland Ice Sheet over the 21st century using an ice-sheet wide, high-resolution, ice-ocean numerical model that includes surface mass balance forcing, thermal forcing from the ocean, and iceberg calving dynamics. The model is calibrated with ice front observations from the past eleven years to capture the recent evolution of marine-terminating glaciers. Under a business as usual scenario, we find that northwest and central west Greenland glaciers will contribute more mass loss than other regions due to ice front retreat and ice flow acceleration. By the end of century, ice discharge from marine-terminating glaciers will contribute 50 ± 20% of the total mass loss, or twice as much as previously estimated although the contribution from the surface mass balance increases towards the end of the century.

     
    more » « less
  6. Abstract The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S. 
    more » « less
  7. Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023​​​​​​​). See the Data availability section for the complete list of datasets. 
    more » « less
  8. Abstract

    Getz Ice Shelf, the largest producer of ice shelf meltwater in Antarctica, buttresses glaciers that hold enough ice to raise sea level by 22 cm. We present a new bathymetry of its sub‐ice shelf cavity using a three‐dimensional inversion of airborne gravity data constrained by multibeam bathymetry at sea and a reconstruction of the bedrock from mass conservation on land. The new bathymetry is deeper than previously estimated with differences exceeding 500 m in a number of regions. When incorporated into an ocean model, it yields a better description of the spatial distribution of ice shelf melt, specifically along glacier grounding lines. While the melt intensity is overestimated because of a positive bias in ocean thermal forcing, the study reveals the main pathways along which warm oceanic water enters the cavity and corroborates the observed rapid retreat of Berry Glacier along a deep channel with a retrograde bed slope.

     
    more » « less